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et X X2 . be a sequence of random variables and write X ) for
the kP largest among X;,X,,...,X . If {kn} is a sequence of

integers such that kn+u>,kn/n-+0, the sequence {Xﬁn)} is referred to
n
as the sequence of intermediate order statistics corresponding to the

intermediate rank sequence {kn}'

The possible limiting distributions for Xﬁn) have been characterized
{(under mild restrictions) by various authors wh;L the random variables
xl,xz... are independent and identically distributed. In this paper we
consider the case when the {Xn} form a stationary sequence and obtain a
natural dependence restriction under which the "'classical" limits still
apply.

It is shown in particular that the general dependence restriction
applies to normmal sequences when the covariance sequence {rn} converges

to zero as fast as an appropriate power n® as n+ .
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intermediate ranks.
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1. Introduction.
~'> The problem of finding the asymptotic distribution of the maximum
term from a stationary dependent sequence of random variables (r.v.'s)
has been extensively investigated in the literature. Of particular
interest are the cases in which the concept of "approximate independence’
is formulated mathematically in terms of conditions such as ''strong
mixing" or, for normal sequences, conditions on the rate of decay of the
covariances. Loynes (1965) showed that under strong mixing and an
additional redtriction, the (suitably normalized) maximum of a dependent
sequence has tke same limiting distribution as the maximum of a corresponding
independent anélidentically distributed (i.i.d.) sequence, provided the
latter sequencd has a limiting distribution. This limiting distribution
is thus necessarily one of the three classical types of extreme value
limit laws. For stationary normal sequences Berman (1964) found
covariance conditions under which the distribution of the maximum
converges to the double-exponential limit law, which arises in the i.i.d.
normal case. More recently, Leadbetter (1974) obtained the general
result of Loynes under a weaker "distributional mixing" assumption and
showed that with Berman's covariance conditions the normal case may be
plaéed into the general framework. Additionally, Leadbetter considered
the related high-level exceedance problem for stationary sequences,
leading to corresponding limiting results for extreme order statistics.
'i'Our objective in this paper is to obtain analogous results for
so-called intermediate order statistics. Specifically, for a given
h

sequence of r.v.'s {xn}, let X&n) denote the k°

and let {kn} be integers such that 1 < k < n for each n. Then if

largest of X X
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k, >« but k /n~+0, {Xﬁn)} is called a sequence,of intermediate order
n A

statisties and ~£kﬁ}»4§b intermediate rank sequence. Wu (1966) found
that, subject to the mild restriction that kn increasg¢ monotonically,

when the {Xn} are i.i.d. the only possible nondegenexate limit laws for
the normalized sequence {an(xﬁn)- bn)} are normal and lognormal. In

n
Section 2 we will establish general conditions under whidy the intermediate

order statistic Xﬁn) from a stationary dependent sequence thl\ has the ?
same asymptotic diélribution as it would if the {Xn} were i.i.d.” These
conditions parallel those used to obtain the corresponding result in the
extreme order statistic problem, a primary difference being that certain

more rapid '"mixing" rates have to be assumed. Using our procedure it is

convenient to deal directly with an appropriate level exceedance problem

——— s

and to regard that of asymptotic distributions as a specialization. In

~—

Section 3 we show that under a certain decay of the covariance funyi} n
our general conditions are satisfied by a stationary normal sequence

- e

{Xn}; in this instance it is known (see Cheng (1965)) that the asymptotic
ﬁn) for an independent sequence is itself normal and

n

hence is also normal in the dependent situation considered.

, distribution of X

—-— g, =

o) 2. The general stationary case.

First suppose that {Xn} is an i.i.d. sequence of r.v.'s with

: marginal distribution function (d.f.) F(x) = P(X;<x) and that {kn} is

an intermediate rank sequence. Let {un} be real numbers, write L
n ia' 1
: s, = igl I, ; where In,i is the indicator of the event (X, > u }, i.e. E%
Pt Tl . .
| | In,i =1 if Xi > u, and In,i = 0 otherwise, so that Sn is the number
) .F of exceedances of the level u_ by X.,,...,X , and let & be the standard
n 1 n S
ivailability Codes |
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normal distribution function. It follows from the Berry-Esseen theorem 1

and the basic equality

P(X]En)Sun) = P(S_<k)
n
that
(2.1) PxX™su ) > ou) as n+
: k. n
n

if and only if

(2.2) 1- F(u) =k/n- u./q/n + o(/i;/n) .

Thus, there are constants a (an > 0) such that an(xﬁn)—bn) has a
n

n’bn
limiting distribution if and only if there exists a function u(x) such
that, writing un(x) = x/hn + bn’

(2.3) 1 - Fu () = k/n - u()/k /n + o(VK_/n)

for all continuity points of ®(u(x)), and furthermore if (2.3) holds then

P(an(xlgz)-bn)s X) » d(u(x)) as n + ®

for all continuity points of &(u(x)). Wu (1966) proved that if {kn} is

nondecreasing then the only possibilities for u(x) are

(i) u(x) = -a log |x| , x<0 (a>0)
u(x) = =, x20

(ii) u(x) = -, Xx<0
u(x) = o log x , x>0 (a>0)
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(iii) u(x) = x
(iv) functions obtained by replacing x by ax+b (a > 0) in

(1), (ii), or (iii).

It may be noted that if for example F is continuous then for any real u
it is possible to choose levels u satisfying (2.2), and hence such that
(2.1) holds, but of course these levels may not necessarily constitute a
family un(x) = x/an + bn which satisfies (2.3) for some function u(x).
Our approach to proving that, say, (2.1) holds for a stationary
dependent sequence {Xn} is to assume that (2.2) holds and then to use a

dependent central limit theorem to prove that

P(Sn<kn) + ®(u) as n+

and thus that (2.1) holds. Since (2.1) and (2.2) are equivalent for
independent sequences, the assumption (2.2) can alternatively be stated

A A
as P(Xén)sun) + ¢(u) where Xﬁ") is the knth order statistic in the
n n A A

"associated independent sequence'’ xl’XZ""’ that is, an i.i.d. sequence
which has the same marginal d.f. F as each Xn. For easy reference we
start by stating two known results from dependent central limit theory.
The first one is Lemma 5.2 of Dvoretzky (1972), while the second one

follows for example from Theorem 2.3 of Durrett and Resnick (1978).

Lemma 2.1. Let X be an r.v. on (Q,A,P), write d(X) for the o-field

generated by X, let B be a sub-o-field of A and define
o = sup{|P(AB) - P(A)P(B)|: Aeo(X), BeB} .

If |X| <1 then
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E|E(X|B) - E(X)| < 4a .

N
Lemma 2.2. For n 21 let {Xn i}izl be r.v.'s on the probability space

(2,B,P) and let {Cn i} be sub-o-fielde of B such that xn i i8

Cn i-measurable. Suppose further that Cn i © C_ . and that

» n,i+l

E(xn,i+llcn,i) =0 for 1si<N . If Ixn’ils e, 1 sisN, for

gome constants € 0, and if

N

n p
(2.4) §oEC
i=2 "

i[C ) + 0 ag n-

n,i-1

bl

For some constant o 2 0, then

P(L X, ;5%) > ¢(x/0) ae n+> =
for all real x, where ®(x/0) ie defined to be 1 for x 2 0 and 0 for
x< 0.

To be able to give conditions restricting the dependence in the

sequence {Xn} it is useful to introduce certain "mixing coefficients."

Let Bn,k = O(In,l""’ln,k) be the o-field generated by In,l""’In,k;

define

%, (n,k) = sup{|P({X ,;su }nB) - P(X  .su)P(B)|; iz0,BeB__ .},

a,(n,k) = sup{|P({Xn+iSun, xn+jsun}fws) - P(X 5y Xn+j5un)P(B)|;
i,j20, |i-j|s kyBe Bn,n~k} H
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and put
o(n,k) = max{al(n,k) s az(n,k)} .

It is easily checked (by simply listing the events of G(In,mi R In,n+j))

that

4a(n,k) = sup{|P(AnB) - P(A)P(B)|; A ¢ O nei > Tnnes)

for some i,j20, Ii-jISk:BEBn,n-k} :

Our main dependence condition, to be called A(un), depends on the levels
u_ and involves sequences {zn},{z;l} of integers which of course may be

chosen to be different for different sequences {un}.

Condition A(un) will be said to hold if

vk ]
n 2
E i-_zl IP(Xl>un’ X1e3>p) - (1-F(v))) |+0as n>o,
L and if furthermore there exist sequences {2 } and {9.1'1} of integers
., . » ' ' = =
' satisfying Qns Zns /kn , P.n o(zn) , !Ln o(/kn) such that
Lo
- ~ a(n,t )+ 0 and == &(n,%') > 0 as n +
! ,/kn '“n /kn *“n :
. q
1 "‘
[

The mixing condition in A(un) differs from the strong mixing

condition which uses the mixing coefficient

e Xt

} : a(n,k) = sup{|[P(AB) - P(A)P(B)|; Aeo(X ,X _.,...),Beo(X
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in that substantially fewer events are involved. However, for a strongly
mixing sequence, clearly a(n,k) 2 afn,k') if k £ k', and hence the
second part of A(un) follows if

L a(n,L) ~ 0 as n~» o,

Vi n

n
However this condition may be harder to check; in particular this seems
to be the case when {Xn} is normal.
To state the next lemma, which contains the major part of the proof

of (2.1) for dependent sequences, we need some further notation. We

partition the first n integers into long and short "intervals"

Jl’Ji’JZ’Jé""’Jﬁn’ with Jl’Ji""’JNn of alternating lengths
t 3 [] |
zn,zn,...,zn and with JNn of length r < ln + ln. Clearly
(2.5) Nn ~ n/ln .
i i
. - s v - L .
Further, define Cn,i U(In,j’ je k:IJk) and Cn,i G(In,J’ Jé’kgle),
and put
X, = L g5 - BOG slC 5 3Ry
jed,
i
and

;- E(In,jlq,,i‘l)}/.rq

for 2 <i <N .
n




Lemma 2.3. Suppose that the stationary sequence {Xn} satisfies A(u n).

Then
-

! N
‘ (2.6) izz j,kzeJ.lE(In’j Lo - B, DE OI/k >0
f jek *

and

N L
(2.7 iZZ jEZJ. B, 51C, 5.0 - B, Pk + 0
1

as n~+ «, and (2.6) and (2.7) hold algo when Js ig replaced by J; and

| C i By C .. If in addition (2.2) holds then
N
; 2 1
’. 122 E(xn»il n,i-l) 1.
; (2.8)
l N
i n L
. 2 1
[ t
R D

as n > o,

Ty ,

‘ :; Proof. Since E(In,j) =1 - F(un) and E(In,j In,k) = P(xj>un R Xk>un)

‘ it follows by stationarity that

LA

4
! N
PI IR, LT ) - B OB Dl/K
I . - I .
122 j,keJi n,j n,k n,j n,k n
' j=k
| /e, 2
SN & igl [POXp>uw X p>u) - -F) /K,

R B anaunith dhakdlid i Epp—— hiae

[ om ek g - w{-‘-ﬁ.ﬁ&ﬁ?"’““"w'
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which tends to zero as n + « by A(un) since NnILn/kn ~ n/kn. This

s

proves (2.6).

Next by Lemma 2.1 and stationarity we have for j € Ji that

EIE(In lcn’i_l) - E(In’j)l < 4oy (n,20) < da(n,l) ,

»J

and hence by A(un) that

Y . AT LI B A SR o zn s - 1o

N
n
i.—z.z JEZJ- EIE(In,j]Cn,i_l) ~ E(In,J)I//_]q < 4Nn£nu(n’2;l)/-/‘]'<‘;
1
< Kkno(n,20) /K]

>0 as n=» o,

and (2.7) follows.

I To prove the first part of (2.8) we note that

R T ———

2
(2.9)  ECX51C 5 ) = J. kzeJ B, 5T G i) - B 516 5 )
ked;

JEer———

1 s EC L 5 k)

Reasoning as above, we have

! N
n
(2.10) E|E(I_ .1 c . - E(I_ .1 k
igz j,k{.Ji l ( n,j n,kl n,1-1) ( n,j n,kn/ n
< 16N_22 &(n,2')/k :
n'n "0’ "n H
|
) + 0 as n> o, p
1
1
[N - T
{ r ik

:_\." s w

- - PEIRL'Y
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<1,

and furthermore, since |In j
H

E‘E(In,jlcn,i—l)E(In,klCn,i—l) - E(In,k)E(In,j)I

L]

EI{E(In’jIC ) - E(In’j)}E(In,len’i_l)

n,i-1

+ B(I, LB, (1€ 5 ) - By O

IA

EIE(In’le ) - E(In’j)|+ E}E(In’k|Cn’i_l) - E(In'kﬂ

n,i

IA

1)
8a1(n,2n) s

and thus it follows similarly that

(2.11) Z . ) ElE(In,jICn’i_l)E(In’klcn’i_l) - E(In,j)E(In’k)f/kn

+~ (0 as n=> o,

Further, by (2.6), (2.5), and (2.2},

N
n
izz ; gi , {E(In,j In’k) - E(In,j)E(In,k)]/kn
ey
N
- fl ! {ECT ) - E(1. )Mk
i=2 JEJI n,J n,) n
Nn
. iZz j EE.J B(r, 51,50 - B(L, DEI Ik,
SRS

i*k

i

(N -1)2 {(-F(u)) - (1~F(un))2}/kn + o(1)

+ 1 as n* o,

and together with (2.9) - (2.11) this proves (2.8).




Finally, the proofs of the remaining assertions of the lemma are

similar and are left to the reader. 0
i Our main results now follow easily.

. Theorem 2.4. Let {X } be a stationary sequence of r.v.'s, let {k } be

an intermediate rank sequence, and let Sn be the number of exceedances

of u by Xl""’xn' If (2.2) and A(un) hold then
P((S, - E(Sn))//kn $x) + O(x) as n >
for all real x, and therefore

Px{Msu ) = P(S <k ) + &(u) as n o> .

n
? Proof. Since |I_ . - E(I_ .|C_ . )| < 2 we have that
f - n,Jj n,j' n,i-1
' |Xn il < ZQn/an -+ 0, and it follows at once from (2.8) and the

definition of {Xn i} that the conditions of Lemma 2.2 are satisfied

»

(with 02 = 1), and hence that

N
n d

.Z Xn,i +® as n > o,
i=2

Similarly it follows that

Together with Lemma 2.3 this implies that
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N N
(s,-E(S )/ Vk = jeJEuJi(In’j -EIn’j)//TI: + 152 X, g+ ié; Xk s
Nn
+ 122 jEZJi {E(In’len,i_l) - E(In,j)}//_lq
Nn
+ igz jeZJ:fL {E(In’jlcl'l’i_l) - E(In,j)}//q

d
+> ¢ as n+ oo

and thus proves the first part of the theorem.

Next by (2.2)

(k,-E(S )Yk = (k -n(1-F(u)))/Vk
> u as n > o,
and, writing

P(S <k ) = P((S -E(S))/Vk_ < (k -E(S))/VK ) ,

the last part of the theorem follows at once since ¢ is continuous. O

Using this result we obtain the following theorem, giving sufficient
conditions for Xén) to have an asymptotic distribution, which is the

n
same as if the Xn's were i.i.d.

Theorem 2.5. Let {xn} be stationary and suppose that for eome constants

a>0,>b
n n

Pa_ (XM -b )sx) + Su(x)) as n o=
n
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A
for all continuity points x of u where {X]En)} ig the independent
sequence assoctated with {Xn}. If A(un) ie satisfied for u = x/an + b

for all continuity points x for which u(x) is finite, then for euch x

This then holds for all x if u ig continuous (as is the case when for

example k.

3. The normal case.

14

n

P(an(xlgn)-bn)Sx) + d(u(x)) as n > w.
n

increases monotonically).

In this section the general results obtained above are applied to
normal sequences. Let {Xn} be a stationary normal sequence which for

convenience is assumed to be standardized to have zero means and unit

variances.

satisfies

(3.1)

for some constant p > 0 to be specified later. Write

It is easily seen that since L 0 we must have § < 1, and that (3.1)

implies Gn

and define

We assume that its covariance function rn = EXJ‘X“n

r = om™?)

§=sup|r_|, & =sup|r | .
a1 M Ny m H

= O(n'p). Further, let {kn} be an intermediate rank sequence

6 = 9({kn}) by

[}
9 = inf{e" ;kn=0(ne )} .




|
|
|
|

- ———

—— e

SRR i N o v D N Bt Bltndi SRy S

15

Clearly 0 <6 <1 and kn = 0(n6+€) for all € > 0,

Now, for x real, suppose that u satisfies (2.2) (with u replaced

by x), i.e. suppose that

(3.2) 1 - ¢(un) = kn/n - x/?;Yn + o(/?;Yn)

By making a first order expansion of ¢ around the point bn’ it is

easily seen that one such u_ is u_ = x/a_ + b_ with
n n n n

b= o1 - Kk, /n), a =nd' (b )/VE .

= ' ' [} 1 s H
Somewhat more generally, un x/an + bn for an,bn satisfying
aglaa-+1 s agl(ba-bn}+0 also satisfies (3.2). We require the following

two useful technical results. First, for {un} satisfying (3.2) we have

k/n~1- o)~ (2m Tu’e e

and taking logarithms gives u ~ v 2 log n7kn so that

~u
(3.3) e "~ am(k /m)? log n/k_ .

In the following two lemmas we find conditions on p which ensure

that A(un) is satisfied.

Lemma 3.1. Suppose that 6 < 1 and that {rn} satisfies (3.1) for some

p>08. Then




e ——— e e e < A
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Ve ] 2
n
K igl [PO>u X 20 - (1-0 )?] + 0 as n .

Proof. As a special case of a result used by Berman (1964) and others,

we have that

2 -un/Clelr )
[P(X1>un, X437 ) - (-0 ) | < Klrile

for some constant K (depending only on 6 but whose value may change from

line to line below). Hence

VK]
= |P(X,> X, .> 1-9 2
A -u2/(1+ |x ])
<K ¥ Y r.]e ,
n j=1 1

and we estimate the latter sum by splitting it into two parts: for
1<jsy and for vy <j ¢ [Jkn], where vy = [(n/kn)C] with
0 <€ < (1-6)/(1+8). By (3.3)

n

n

2/ ) L 12/(1+6)
(log 7-)y
n

+0 as n -+ ®

by the choice of Y.

Since 6 < 1 and Gn = 0(n"P) by the assuimption on (rn};'we

have that 6yu§ + 0 as u+ %, and hence (3.3) gives, for i » v,




- . i e

2 2 2 2
-ut/(1+fr. ) -u”/(1+6 ) -u_+ 8 _ut/(1+68)
e M 17 oM Y. e M YN Y

knz n
SKT logrn'

Thus, (defining the sum to be zero for y 2 [/kn]

S —
n [/I;] -u;/(l+|ril) kn n ¥ ]
o ) Ir.je < K-~ log = ]
n  i=sy+] n  i=y+l
" (V/k 1
< Kk 2 log = Z
n n i=y+l

For the three separate cases p <1, p =1, and p > 1, the last sum is
bounded by a constant multiple of kﬁl-o)/Z’ log /kn , and 1 respectively,
Therefore in any case the expression on the right-hand side tends to zero

since p > 0, thus concluding the proof of the lemma, 0

To establish the latter part of A(un) we shall further extend an
important method, due to Slepian, Berman, and Cramér, from the extreme
value theory of normal processes. In addition to conditions on p, we
shall for convenience assume that kn does not increase too slowly, or

more precisely that

(3.4) k,/(log M s e as now,
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Lemma 3.2. Suppose that {rn} satiefies (3.1) and (3.4) with
p > max(36/2, 2(2-1/0)) and that {un} satigfies (3.2). Then there
|
i i exigt sequences {Qn} and (R."‘} which satisfy the requirements of A(un).

Proof. We first show that there exists a sequence {l;‘} with 2! < Vk

and Qlfl = o(Y kn) such that

(3.5) Jﬁ?: a(n,2)) + 0 as n >,

n

First, by (3.4), a sequence {9.;1} can be chosen so that

Slr'l=o(/§) s llr'ls/l; but such that 2,'] 2 (log n)l/D . We shall impose a

slight further restriction on 2,'1 later, but for the moment just assume
these properties. Then since Gn < kn~P by (3.1),
ul6,, < K(log n)(log n) ™! = K, and hence by (3.3), for j » e,

n

2 2 2
_un/(1+6j) _ -u-+u Gj/(1+6.)

(3.6) e e < l((kn/n)2 log n/kn .

Now let B ¢ O(In

BUREEE In’n_z;\) and 2 2 0 be fixed. Then B is a
n-z;‘
disjoint union of sets of the form n {I_ . = xi}, where each X is
i=] ?

zero or one; and hence for any j, 1 < j £ n - 9.‘",

B = BO{In " 0} v Bl{In i® 1}

1 ] »
where B0 and B1 are sets of the same general form as B, except that the

jth factor in the intersections are missing. It is evident that

ROV~ - it e B ik il iical. et i —— e
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B= {(xl,...,xn_l;])ea}, Bi={(x1,...,xj_1 b Kiypeeees xn_g;‘)esi} ,
i=0,1,
_ n-Zé — ww D-2'-1
for some sets BeR , B ,Ble R T

Let R1 be the covariance matrix of the vector (Xl,...,Xn_‘Lr,1 ,Xn+2),
let R0 be the covariance matrix it would have if (xl""’xn-l') and

n
Xn+2 were independent, and define Rh = th + (l-h)Ro. Without loss of

generality it may be assumed that Rl and hence Rh is positive definite,

and writing

where x = (Xl""’xn-k') and fh is the density function of a zero-mean
n

normal vector with covariance matrix Rh’ we have that

(3.7) [P({Xn+25un}n8) - p(xn+25un)p(a)f = |F(1) - F(0)|

s fy IF]

Proceeding as in Leadbetter, Lindgren, and Rootzén (1978, pp. 46-47),

we obtain
n-2! un 32f
(3.8) OIS SR PPy B B~ -
= XeB x o=-0 T j ned

As above, {X ¢ B} = {X* ¢ Fb}{xj 3 un} v {x* ¢ Fl}{xj > un} where

X* = (xl""’xj-l' xj+l""’xn—la)’ and performing the integrations

over x. and x ives
¢ J n+f g1v




where fh(xj= X =un) is the function of X* which is obtained by

n+{
putting xj=un , xm2=un in fh' The last integral is easily seen to be
2 |
’un/(“lrnﬂl-j D]

bounded by Ke
the change of variables Yi® X i=j, yj= -xj and writing

TR = ,
y ()1,---,)’-_1’)'j+1----n)’n_£.)» we have

) n

. “n 2’ ¢ “n Yn 3% £
[ Q" S S B | h
—X—;.é.i X.=u X - ) xj xn+2 .*.GE y.z-o y = _oo Eyjsyn"'ﬂ

1 7j "n "n+d 4 1 7] n+f
= -j"'i gh(yj='un ’ yn*2=un)
Y*e B1
where g, is defined from (xl""’xj-l’ -xj'xj+1""’xn—26’xn+2) in the

same way as fh

modulus of the latter integral is seen to be bounded by Ke

is defined from (X, ,...,X e s X ). Agaipn, the
1 n- Qn n"‘ﬁ ‘ulgl/(l‘_‘r

and it follows that

“n 32 £ -uﬁ/(1+|rn*l_.|)
l]j f g—-g-—’SKe J .
—_- = X.0X
XeB x  ,=-o i
n+k

Inserting this into (3.7) and (3.8) gives

, with K depending only on §. Next, making

n+l-j

D,

h
4
i
i
!
1
f
E
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P <uns . R 'urzl/(l"'lrm»l-jl) |
neg SUp} 0 B) - POC L <u PR < K jgl LI
n -uﬁ/(l*d-)
SK ] 8, e I
=ty

Since the last expression is independent of the particular £ and B

considered, we have that

n -uﬁ/(1+6j)
a;(n,20) s K ) Gj e .

2
k n
-0
(3.9) oo (n,2) s K [—“J log o~ ) 3",
‘/§; 1 n ‘fE; n k, j=2!

For the three cases p <1, p =1, and p > 1, the last sum is bounded by

a constant times nl"p 1-p respectively, Thus, since

, log n, and lﬁ
p > max(36/2,2(2-1/8)), the right-hand side of (3.9) clearly tends to zero

R
when p < 1. For p > 1 it is readily seen that lﬁ may be redefined (by

’Ql increasing if necessary, keeping £ﬁ=°(Jk“) ,QASJkn) so that (3.9)

! still tends to zero. Hence (3.5) follows.

P

' j The proof that nk;% “2(“'26) + 0 as n + o for the above choice of

! RA is only notationally more complicated, and together with (3.5) this

shows that

L eae

L1




-———me il a0

3 '
- a(n,ﬁn) +0 as n»®,
n
It is now easy to see in the same way that, for any sequence kn with

2' < & < Yk_, we have
n n n

E(n,ln) + 0 as n-+ » ,

n
vk
n

and this proves the lemma. 0

It now follows at once that A(un), and hence the results of Theorems
2.4 and 2.5, hold for stationary normal sequences which satisfy the above

conditions., To avoid repetition we only state an analog of Theorem 2.5.

Theorem 3.3. Suppose that {Xn} 18 a stationary normal sequence and {kn}

an intermediate rank sequence such that

r =0, some o > max(36/2 , 2(2-1/8)) ;
and suppose that in addition kn/(log n)Z/p + o, Then

Pla(x™-b )sx) + 0(x) a8 n >
n

for all real x, where a and b ~are defined by e ) =1 - kn/n and
a = n¢'(bn)/vq§; .

Finally, it should be remarked that the covariance condition of the

theorem does not seem to be optimal. Perhaps even a condition like

W PAR w4

M AP g
—
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=) >0,

or, translated into terms of (3.1), p > 6, may be sufficient. In fact,

we have been able to show that if Xn can be written as a moving average

oo
of independent normal random variables X = Z ciYn-i’ with c, = O(n'p)
j=-

for some p > max(6,%), then the conclusion of Theorem 3.3 holds. 1In

particular, this provides a large class of examples of processes with
= -p
T o(m ™) ,

such that P(an(xk —bn)SX) -+ &(x) for any p > max(6,%).
n
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